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ABSTRACT 
 
 
 

IMPACTS OF TREATMENTS ON FOREST STRUCTURE AND FIRE BEHAVIOR IN DRY FORESTS 
 
 
 
Forest managers are increasingly using mechanical treatments in dry forests of the 

western US in order to produce stands with spatially complex structure while also reducing 

crown fire potential. However, there has been a lack of evaluation of these treatments on 

spatial patterns in dry forest types of the western US. In addition, the implications of 

heterogeneous fuels complexes on fire behavior are not well understood due to a lack of 

experimental data and the use of semi empirical models which cannot account for the 

structural complexity of fuel beds. The lack of well quantified studies on changes in spatial 

heterogeneity and limitations on quantifying the associated fire behavior suggest there are 

gaps in our knowledge regarding the implications of mechanical fuels treatments.  

The primary emphasis of this thesis is in Chapter 1. I comprehensively stem-mapped 

seven 4 ha plots, after treatment in dry, coniferous treated stands across the Southern Rockies 

and Colorado Plateau. Then, I estimated pre-treatment structure by constructing linear 

allometric regressions of tree characteristics and applying these to mapped stumps thus 

producing stem-maps before treatment. To investigate how these treatments altered structural 

complexity, I used spatial statistical analyses to assess spatial relationships of trees, before and 

after treatment, occurring at stand and within-stand scales as well as horizontal and vertical 

dimensions. Then, I assessed the cumulative effects of the reduction and spatial alterations of 

structure on potential fire behavior, measured by rate of spread, fireline intensity and percent 
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of canopy consumed, across a range of open wind speeds using the Wildland urban-interface 

Dynamics Simulator (WFDS). WFDS is a physics-based model capable of representing the 3-D 

complexities of the fuels complex and captures fuel-atmosphere-fire dynamics through space 

and time. Results from this chapter suggest (1) treatments impact facets of structural 

complexity in varying ways, though avoided large-scale homogenization of forest structure, (2) 

within canopy wind speeds increase following treatments and, (3) fire behavior can be altered 

in two distinct manners following treatments. In most cases, the alterations in the fuels 

complex coupled with greater within canopy wind speeds resulted in an overall decrease in 

potential fire behavior and crown fire activity, especially at high open wind velocities.  

However, in two cases I examined there were increases in fire behavior following mechanical 

treatments. In these cases the increases were primarily associated with increased surface fire 

behavior.  The results from this chapter suggest that these mechanical treatments may not 

always enhance, but can promote, a degree of structural complexity, and that mechanical 

treatments are effective if implemented strategically. 

Chapter 2 reports on litter bulk density values for use by managers to improve fuel 

loading assessments. Litter bulk density as a factor, in conjunction with litter depth, is used to 

estimate litter load necessary for fuel hazard assessments as litter is a primary carrier of fire 

and its load impacts potential rate of spread, fireline intensity and smoke production. In 

addition litter load estimation is needed for estimating carbon and wildlife habitat availability. 

However, available litter bulk density factors are limited by region, forest type, and site history. 

This chapter uses data collected on litter bulk density in both ponderosa (Pinus ponderosa 

Lawson) dominated and dry mixed conifer stands throughout the southern Rockies across sites 
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that have been recently mechanically treated and in recently undisturbed sites. Results show 

litter bulk density was much lower in ponderosa pine forest than mixed conifer, and the impact 

of treatment was relatively negligible. These results provide managers in the southern Rockies 

with a regionalized value that may improve accuracy for estimation of litter load. 
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1. A SPATIALLY DRIVEN EVALUATION OF STRUCTURE AND FIRE BEHAVIOR FOLLOWING 

HETEROGENEOUS TREATMENTS IN DRY FORESTS 

 
 
 

1.1 INTRODUCTION 

Land management practices following Euro-American settlement such as livestock 

grazing, road building, logging, fire suppression, and timber-oriented management have 

contributed to an altered forest structure particularly in dry western forests that historically 

had frequent low severity fire regimes (Veblen et al., 2000; Fulé et al., 2009; Naficy et al., 2010 

Franklin et al., 2013). As a result, modern forests are often regarded as exhibiting a build-up of 

fuels, leading to greater potential for extensive crown fires and tree mortality and lower long 

term forest resiliency (Savage and Mast, 2005). This concern has prompted an increased 

emphasis on the use of mechanical treatments to mitigate crown fire potential (Agee and 

Skinner, 2005).  

Mechanical treatments also seek to reduce fuels in a manner that results in greater 

structural heterogeneity (North et al., 2009). It is believed that treatments which promote a 

heterogeneous arrangement of structure are more likely to produce ecological functions 

characteristic of dry forests than homogeneous forests given that stand dynamics tended 

towards heterogeneity before settlement (Larson and Churchill, 2012). For example, 

mechanical treatments are utilized to create greater diversity of vertical canopy structure for 

avian species (McElhinney et al., 2005), such restoring northern goshawk (Accipiter gentilis) 

habitat (Youtz et al., 2008). 
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Figure 1.1. An overhead view of 30 trees rearranged in various levels of vertical and horizontal structural 

complexity. Complexity can be further described at the stand scale (e.g. describing tree patterns) and patch scale 

(e.g. enumerating patches, openings, and individual trees). Circle areas represent relative tree heights. 

The description of heterogeneity for a given stand can be thought of as a spatial 

problem that consists of multiple dimensions and scales (Figure 1.1). At stand scales, structure 

can be described horizontally, such as classifying the general spatial pattern exhibited by trees 

(e.g. Harrod et al., 1999) and vertically, by measuring the degree to which differently sized trees 

spatially intermingle (e.g. Franklin and Van Pelt, 2004). At finer spatial scales, dry forest stands 

are also spatially decomposed into a horizontal mosaic of tree patches, individual trees, and 

openings (Larson and Churchill, 2012). The vertical dimension of complexity at this scale 
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describes the variability in tree heights within patches (Cooper, 1960; White, 1985; Mast and 

Veblen, 1999). 

Despite the increased emphasis on altering structural complexity using mechanical 

treatments, there are relatively few studies that document changes following treatments 

(Larson and Churchill, 2012).  While it has been shown that treatments which utilize spatially-

explicit reference conditions to guide silvicultural implementation can meet structural 

complexity objectives (Harrod et al., 1999; Churchill et al., 2013a), a paucity of available 

reference conditions coupled with biophysical disparities between a reference stand and the 

stand in question limit the potential use of reference conditions in many areas. This often 

leaves managers to rely on a non-spatial view of forest structure reinforced by current fuels 

management planning tools to guide implementation (Larson and Churchill, 2012; Churchill, 

2013).  It is unknown if a non-spatial approach can promote a heterogeneous forest structure 

with high complexity (Larson and Churchill, 2012). 

The creation of structural complexity challenges examination of the primary goal of 

these mechanical treatments, reduction of undesired, potentially hazardous fire behavior. Past 

work has suggested that mechanical treatments could reduce fire hazard following a 

combination of decreasing surface fuel load, canopy bulk density and increasing canopy base 

height (Agee and Skinner, 2005). For example, several studies have assessed the impact of 

mechanical treatments on potential fire behavior linking empirical and semi empirical point-

functional modelling systems to evaluate fuels reduction and restoration treatment effects 

(Reinhardt et al., 2008; Fulé et al., 2012). Specifically, these studies have utilized linkages 

between the surface and crown fire spread models developed by Rothermel (1972, 1991) and 
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the crown fire initiation and spread models developed by Van Wagner (1977). Modeling 

approaches based upon these linkages are not able to account for the spatial distributions of 

fuels, as well as fire behavior dynamics arising from fuel-fire-atmosphere interactions; this 

assumption of homogeneity has been attributed to poor model performance in heterogeneous 

fuels complexes (Van Wilgen et al., 1985). 

Recently developed physics-based fire models, such as Wildland-urban interface Fire 

Dynamics Simulator (WFDS) (Mell et al., 2007, Mell et al., 2009), and HIGRAD/FIRETEC (Linn, 

1997), use a three dimensional numerical grid to represent the fuels complex and simulate the 

major physical processes that influence fire behavior. Physics-based models have recently been 

used to explore how wind and fire behavior behave in heterogeneous fuels arrangements with 

varying degrees of structural complexity. Hoffman et al. (2012) used WFDS to investigate the 

interaction between several levels of bark beetle-caused tree mortality and the spatial pattern 

of overstory trees on fire behavior. They found that the modeled fire behavior was dependent 

the stand scale spatial pattern, with highly aggregated patterns exhibiting greater fire behavior 

compared to random or homogeneous spatial patterns, when the canopy fuel load and vertical 

structural complexity was constant. Pimont et al. (2011) used FIRETEC to investigate the effect 

of both canopy fuel load and tree aggregation fire behavior. Their study showed that the level 

of canopy fuel load had the greatest effect on potential fire behavior, but that the degree of 

tree aggregation influenced how variable winds were within the canopy. The findings of these 

studies suggest that alterations in the fuel loading and the spatial pattern of the fuels complex 

influence the potential fire behavior. Unfortunately these studies depend on hypothetical 

changes which may not be representative of actual mechanical treatment operations. 
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The overall goal of this study was to use a combination of field inventories and physics 

based fire behavior modeling to examine changes in forest structure and to investigate the 

associated changes in fire behavior arising from mechanical treatments in dry forest types of 

the eastern Colorado Plateau and southern Rocky Mountains. To meet this overall goal, I 

investigated two questions. First, how are the sampled treatments altering structural 

complexity? Second, given the changes in structural complexity what impacts do these 

treatments have on potential fire behavior?  To answer the first question, I examined structural 

complexity in both the horizontal and vertical dimensions determined at the stand and patch 

scale.  To address the second objective I utilized WFDS to simulate the alterations in within 

canopy wind flow and the associated changes in fire behavior. Owing to a current paucity in 

spatially-explicit forest data and analysis (Larson and Churchill, 2012), this study’s results 

regarding effects on structural complexity provide for discussion on how spatial objectives 

could be integrated into treatment planning and evaluation. In addition, WFDS simulations 

suggest possible ramifications of structurally complex mechanical treatments on fire behavior.   

1.2 METHODS 

1.2.1 Study areas 

Seven sites were sampled that had been recently treated with a mechanical thinning 1-3 

years prior, across the Colorado Plateau and southern Rocky Mountains (Table 1.1). Sites were 

selected in consultation with local forest managers based on the criteria that they must have 

relatively little (< 20%) slope and represent typical dry forest structure within the locale. The 
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majority of sites were dominated by ponderosa pine (Pinus ponderosa Lawson) except one site 

(PC) which was mixed, primarily with ponderosa pine, Douglas-fir (Pseudotsuga menziesii 

[Mirb.] Franco) and spruce (Picea spp.). No site had been recently managed or disturbed, with 

exception of a low-thinning, fuels reduction treatment ten years prior to the recent treatment. 

 

Table 1.1. Non-spatial stand structure characteristics of sampled sites pre- and post-treatment. 

QMD, quadratic mean diameter at breast height; BA, basal area; HT, 90th%ile tree height; species codes follow NRCS PLANTS 

Database (USDA NRCS, 2014) 

Managing 

agency 

Site 

name 

Thin 

status 

Trees ha-1 QMD BA HT 
Species comp. 

 
(cm) (m2 ha-1) (m) 

Boulder County 

Open Spaces 
HB 

Pre 418 24.1 19.1 9.8 98% PIPO, 2%JUSC2 

Post 295 25.0 14.5 10.1 98% PIPO, 2%JUSC2 

Kaibab NF LC 
Pre 487 25.9 25.6 20.9 100% PIPO 

Post 203 35.2 19.7 25.3 100% PIPO 

Pike NF MG 
Pre 685 20.5 22.7 14.9 95% PIPO, 5%PSME 

Post 269 22.4 10.6 16.6 97% PIPO, 3%PSME 

Pike NF PC 

Pre 934 18.4 24.8 15.8 
20% PIPO, 54% PSME, 7%POTR5, %19 

PICEA 

Post 352 18.5 9.5 16.6 
32% PIPO, 41% PSME, 17%POTR5, %10 

PICEA 

Roosevelt NF DL 
Pre 516 18.7 14.1 14.2 95% PIPO, 4%PSME, 1% POTR5 

Post 181 19.0 9 15 97% PIPO, 3%PSME 

Uncompahgre 

NF 
UM 

Pre 504 27.5 30 22.1 87% PIPO, 6% POTR5, 7%PICEA, 1% QUGA 

Post 314 26.7 17.6 25.5 87% PIPO, 7% POTR5, 6%PICEA, 1% QUGA 

Cibola NF BW 

Pre 327 27.4 19.3 14.3 81% PIPO, 8% JUSC2, 11% PIED 

Post 63 38.9 7.5 18.2 88% PIPO, 3% JUSC2, 9% PIED 
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Although exact objectives in silvicultural prescriptions varied slightly among sites, all 

sampled areas explicitly stated objectives that sought to reduce potential fire behavior and 

qualitatively described the desired structure in such a way that might increase structural 

complexity (e.g. creation of a mosaic of tree patches and openings, increase tree aggregation, 

promote vertical diversity within patches). All sites were mechanically thinned with targets of 7 

to 14 m2 ha-1 of residual basal area. Removal or retention of trees was based on utilizing 

exiting forest structure rather than strictly guided by locations of remnant material (i.e. pre-

settlement trees, stumps, and logs), and no reference conditions were used to guide 

implementation.  

1.2.2 Field sampling 

In the summers of 2012 and 2013, a single 200 m x 200 m plot was established within 

each site following mechanical treatments. Plots were aligned with cardinal directions and 

randomly located within the thinned stand such that significant edaphic features imposing 

additional heterogeneity (e.g. roads, streams, ridges, unit edges) were avoided. 

All trees at least 1.4 m tall in the post-thinned stand were mapped to a Cartesian 

coordinate system and had the following information recorded: species, tree height (m), 

diameter at stump height (DSH; cm), diameter at breast height (DBH; cm), crown radius (m), 

and crown base height (m). Crown radii were measured as the average of two distances, in a 

random direction from tree bole to crown edge. Crown base height was measured by visually 

compacting the crown (e.g. mentally “lifting” the lowest branches until a complete whorl 

accumulated) (USDA Forest Service 2005). 
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In addition to measuring all the residual trees that were at least 1.4 m tall, all of the 

stumps resulting from thinning were mapped and recorded their species and DSH. To estimate 

tree properties before each stump was cut, this study used a mixed-effects, linear regression 

using measured residual trees as samples. Site, species, and DSH were fixed, independent 

factors used. An interactive term, site x DSH, accounted for potential site differences in the 

relationships of DSH to tree measurements. Preliminary results suggested linear regressions fit 

well and resulted in normal and homoscedastic distributions of residuals. Regressions were 

then applied to stumps to reconstruct the pre-treatment forest structure. 

Surface fuels were sampled within 64 sub-plots spaced regularly every 25 m in each 

treated site as well as in an adjacent untreated site. Untreated sites were chosen in 

consultation with local forest managers with requirements that such sites had similar 

biophysical conditions as treated sites and species composition and structure resembling that 

of treated sites prior to their own treatment.   Stemming from plot centers, two 15 m planar 

transects were laid out in random directions for woody fuel estimation following Brown (1974); 

1-hr time lag (>0.6 cm diameter) and 10-hr time lag (0.6-2.5 cm diameter) fuels were tallied for 

2 m, and 100-hr and 1000-hr time lag fuels, 2.5cm to 7.6cm and over 7.6 cm diameter classes 

respectively, were measured for 5 m and 15 m of each transect, respectively. In each sub-plot, 

litter load and depth were measured in a randomly placed 0.10 m2 quadrat following methods 

by Ottmar and Andreu (2007). Herbaceous and shrubby samples were clipped in randomly 

places 1 m2 quadrats within each subplot and weighed ex situ for 3 days at 80°C for at least 48 

hours to achieve equilibrium dry weight. 
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1.2.3 Analysis of structural complexity 

A specific method was used to examine the effects of mechanical treatments on 

structural complexity on each combination of dimension, horizontal and vertical, and scale, 

stand or patch (Table 1.2). Each method is explained in more detail below. 

Treatment effects on horizontal complexity at the stand scale were identified using 

univariate and bivariate forms of the pair correlation function, g(r). The mechanics of the 

function and numerical implementation are provided by Wiegand and Moloney (2004). 

Conceptually, from each tree location, this function sums the number of trees within an 

annulus of a fixed width that expands with each step of r, the distance from the ith tree. 

Averaging these counts across all trees before and after treatment, the empirical statistics 

gpre(r) and gpost(r), respectively, are produced. The univariate form, which produces gpre(r) and 

gpost(r), was used to separately determine spatial patterns of trees both before and after 

treatment. To accomplish this, the locations of trees were independently and identically 

redistributed using a homogeneous point process multiple times to determine the null range of 

g(r) statistics representing complete spatial randomness (CSR). By testing each observed g(r) 

statistics against the null, at each step of r, the pattern was determined as random (not 

statistically different from CSR), uniform (significantly below the null range), or aggregated 

(significantly above the null range). In an aggregated pattern, the distribution of trees is such 

that a greater proportion of trees are within the annulus than under CSR; conversely, fewer 

trees than CSR at r represent uniformity. 
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Table 1.2. Methodological framework for assessing alterations in structural complexity across dimensions and 

scales following mechanical thinning. 

Scale Method What was examined 

Horizontal dimension 

Stand  Univariate and bivariate point 

correlation functions 

Thinning impacts on the spatial pattern of trees and whether the 

pattern is more or less aggregated following thinning 

Patch Spatial patch detection Changes in aerial cover of individual trees relative to patches 

and changes in patch size distributions, following thinning 

Vertical dimension 

Stand Height differentiation index Thinning impacts on spatial mingling of differently sized trees 

Patch Patch scale coefficient of variation of 

tree heights  

Changes in the variability of tree heights among patches 

following thinning 

 

The bivariate form, gpost(r) - gpre(r), was used to compare the difference in degree of 

aggregation from before treatment to after treatment. For this function, the chosen null was of 

no difference, gpost(r) = gpre(r). For each site, the pre-treatment locations of trees are fixed, 

while the labels of trees that were either removed or retained are permuted several times, 

simulating a random treatment with no difference in aggregation (Wiegand and Moloney, 

2004). Whether the observed gpost(r) - gpre(r) was similar to the null range or departed 

significantly was tested. A significant departure below, or above, the expected range, would 

signify the post-treatment pattern was less, or more, aggregated, respectively. 

The bivariate form of the pair correlation function compliments the univariate form. For 

example, one might find that before and after treatment, the observed spatial pattern was 

uniform using the univariate form. Yet, results using the bivariate form suggest the post-
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treatment pattern was significantly more aggregated than before treatment. This would 

indicate that, though treatment significantly altered the degree of aggregation of trees, the 

magnitude was too low to alter the overall pattern. 

Formal inference to detect departure from the null was accomplished using a goodness-of-

fit test (Diggle, 2003). For each test, the range of null statistics was produced from 999 

simulations. For these functions, functions were implemented across a range of r, from 1 m to 

10 m. The depth of each annulus was chosen as 1 m. These analyses were performed in 

Programita (Wiegand and Moloney, 2004), incorporating Ripley’s (1988) method of edge 

correction. Inference was gained using α = 0.05 for the goodness-of-fit test, as well as all 

subsequent formal tests in this study. 

Mechanical treatment impacts on arrangements of patch scale patterns was evaluated 

using the Plotkin et al. (2002) cluster analysis in a manner similar to Sanchez-Meador et al. 

(2009). This analysis was used to identify whether treatments were enhancing a mosaic of 

patches and openings, in lieu of predominance of continuous cover or individual trees. First, 

each tree’s crown radius was projected to crown area assuming a circular geometry. Then, each 

tree was joined into a unique patch if its crown area overlapped with at least one other tree’s 

crown area but need not have overlapped with every other crown in a unique patch. 

Identification of unique patches was used to examine how treatments were altering the 

proportion of area covered each by patches, individual trees, and openings. Patches were also 

classed by size, as determined by number of trees per patch, similar to Churchill et al. (2013a). 

Patch size classes were divided into small (2-4 trees), medium (5-10 trees), large patches (11-20 

trees), and patches of continuous cover (21+ trees). The largest size class was distinguished 
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separately as it is assumed forest dynamics in dry forests uncommonly produce patches of this 

size (Sanchez-Meador et al., 2009; Churchill et al., 2013a).  Following Plotkin et al. (2002), no 

edge correction was applied. Details on implementation of the cluster analysis are available by 

Churchill et al. (2013b). 

Changes in vertical complexity at both stand and patch scales were also examined.  At the 

stand scale, mechanical treatment impacts were evaluated with the height differentiation index 

(TH) (Kint et al., 2000). This index accounts for the juxtaposition of differently sized trees by 

comparing heights of each tree’s height (HTi) to its nearest three neighbors (HTj), and is 

calculated as: 

𝑇𝐻𝑖 =
1

3
∑[1 −

𝑚𝑖𝑛(𝐻𝑇𝑖 , 𝐻𝑇𝑗

𝑚𝑎𝑥(𝐻𝑇𝑖 , 𝐻𝑇𝑗
]

3

𝑗=1

 

Potential values range from no height differentiation, 0, to extreme differentiation, 1. At the 

patch scale, unique patches were identified from the cluster analysis and I calculated the 

coefficient of variation of tree heights per each patch, CVHT[i]. The impact of treatment on 

vertical complexity was then evaluated using distributions of calculated THi and CVHT[i]. As 

values were distribution non-normally, a Wilcoxon rank sum test was used to evaluate 

differences in median values following treatment per site using R v2.15.2. 

1.2.4 WFDS background 

WFDS was developed by the National Institute of Standards and Technology (NIST) and US 

Forest Service, Pacific Northwest Research Station, and is an extension of NIST’s Fire Dynamics 

Simulator (FDS). WFDS uses computational fluid dynamics techniques to describe the spatial 
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and temporal evolution of fire through a three dimensional numerical grid. WFDS uses a 

numerical form of the Navier-Stokes equations suitable for low-speed, thermally driven flow 

suitable for wildland fires, a large-eddy simulation approach to account for turbulence at a sub 

grid scale and the use of a finite volume method to account for thermal radiation (McGrattan et 

al., 2010). The fuels complex can be represented in WFDS in two ways: The fuel element model 

and the boundary fuel model. The fuel element model represents fuel within the same 

numerical grid as wind flow as a porous medium described by its bulk or mean quantities such 

as surface area to volume ratio, moisture content, and density within each computational cell. 

The boundary fuel model was developed for situations in which the surface fuel bed must be 

resolved at spatial scales that are smaller than the computational grid used for wind flow and 

simulates the fuel bed properties in its own computational grid. In the boundary fuel model, the 

surface fuels represent a source of drag and heat and mass flux occurs at the interface between 

the two computational grids.  The combination of modeling approaches used in WFDS for the 

fuels complex facilitates the user to simulate fires in areas with complex fuel beds, including 

both vegetative only and a mix of vegetative and urban fuels, and accounts for the radiative and 

convective heat transfer between the gas phase and the vegetation and the drag of the 

vegetation on the airflow. Thermal degradation of solid fuels can be simulated using one of two 

approaches a linear function or an Arrhenius type equation. The linear model for thermal 

degradation was used in all simulations described here. A detailed description of the physical 

and mathematical formulations in WFDS can be found in McGrattan et al. (2010), and Mell et al. 

(2007, 2009). Both FDS and WFDS have undergone various forms of model validation and 

verification throughout their development including over 1,200 separate FDS simulations 
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covering a wide set of physical aspects including fluid dynamics, heat transfer, flame heights 

and temperatures and room fire behavior. More detail about the verification and validation of 

FDS can be found in Mcdermott et al. (2013) and McGrattan et al. (2013). Specific evaluation 

studies of WFDS for applications in vegetative fuels is limited to a handful of studies including 

fire spread through Australian grassland fuels (Mell et al., 2007), surface fire spread for 

laboratory scale fires (Bova et al., manuscript in preparation), fire spread through individual 

tree crown burning experiments (Mell et al., 2009), and wind flow through forested canopies 

(Mueller, 2012). Further validation studies of WFDS in vegetative fuels are ongoing but are 

limited by a lack of well quantified field and lab experiments that cover the broad range of 

scenarios and quantities of interest across the field of wildland fire science. As discussed by Linn 

et al. (2013), one of the advantages of modeling systems based on a general representation of 

physical properties governing fire behavior, is that they can be extended beyond the conditions 

for which experimental evaluation has occurred. However, it is important to remember that 

given the uncertainties within the model, the results should be interpreted with caution, as 

with any model. Simulation tools such as WFDS should however, provide insights into the 

interactions between the fire, fuels and atmosphere that can drive the development of new 

hypotheses and experiments, as well as provide insight into data collection methods and 

analysis of field experiments aimed at verifying model-driven hypotheses.   

1.2.5 WFDS simulation details 

Simulation domains were set to 1000 m x 400 m x 100 m with a voxel resolution of 1m 

by 1 m in width and length (Figure 1.2). Vertical voxel resolution changed depending on height 
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in domain spanning from 0.5 m at the bottom of to 2 m at the top of the domain.  In each 

simulation fuels from stem-mapped sites were populated, using the fuel element model, 

between x= [700,900] and y= [100,300], oriented randomly, with respect to the domain. The 

remainder of the domain was populated with randomly oriented, replicated stem-mapped 

fuels. Each tree was defined by its measured x- and y- coordinates, dbh, height, cbh, and crown 

radius. Individual tree crowns were represented as right circular cones defined according to the 

latter three metrics. 

 

Figure 1.2. Schematic of WFDS simulation domains. Note the (a) inflow wind profiles originating at x=0 m, (b) the 

site located 700 to 900 m downwind of the inflow, and (c) the fireline origin at x=650 m. 

Individual tree crowns and surface fuels were defined by a series of bulk properties. As 

crowns fuels represent a combination of fine diameter woody twigs and needles, 4000 m-1 was 

used to define surface area/volume of each crown (Brown, 1970; Scott and Burgan, 2005; Mell 

et al., 2009). The drag coefficient was set to 0.125 (Mueller, 2012), and the crown bulk density 

was set at 1.2 kg m-3. The crown bulk density is lower than that used by Mell et al. (2009) or 

Contreras et al. (2012), however, given the total volume occupied by crowns, the canopy 

(a) 

(b) 
(c) 
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biomass would have been much higher than expected in ponderosa pine forest (Cruz et al., 

2003). Surface fuels were parameterized with a surface area/volume ratio of 5710 m-1, within 

the range commonly observed for herbaceous and litter fuels (Brown, 1970). All fuels were also 

defined with a high heat content of 17,700 (Mell et al., 2009); crown and surface fuel moistures 

were set at 100% and 5%, respectively, representing typical assigned fuel moistures in a 

wildland fire scenario (Scott and Reinhardt, 2001) 

    Surface fuels were populated using the boundary fuel model in WFDS, defined by load 

and depth for each site, before and after treatment. Load was determined as the sum of the 

site-averaged load of litter, 1-hr woody fuels, herbaceous and shrub material. Surface fuelbed 

depth was determined by adding the average litter depth to the average herbaceous and shrub 

material height.  Larger diameter woody fuels do not contribute greatly to fire propagation 

relative to fine fuels (Anderson, 1969; Mell et al., 2009). Because the focus of this study was the 

examine effects of altered canopy fuels, surface fuels were distributed homogeneously across 

each site.  

Parameterized wind profiles entered the domain at the inflow boundary (x = 0). Inflow 

wind speed profiles followed the atmospheric power law function, 

u/ur = (z/zr) 0.143 

, where u is the streamwise wind velocity at height z and ur is the reference streamwise 

velocity at reference height zr (Plate, 1971). In these simulations, ur, was set at 2.2 m s-1, 4.0 m 

s-1, 9.0 m s-1, and 13.4 m s-1 at, zr of 20 m; 20 m corresponds to a meteorological standard for 

open wind. Hereafter, these are referred to as very low, low, moderate, and high wind 

scenarios. Simulations were run for 2500 simulated seconds. At t = 1300, a fireline 300 m in 
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length was ignited 50 m upwind of site location and allowed to burn downwind through the site 

where fire behavior sampling occurred. 

 The outflow boundary was set to an open boundary condition, in effect allowing air and 

energy to freely exchange across the boundary. Lateral boundaries and the top of the domain 

were set to a mirror boundary condition, in effect a free-slip, no-flux wall which assumes the 

conditions outside the domain are identical to conditions on the boundary surface. A typical 

WFDS input file is provided in section 3.1 

1.2.6 WFDS output and analysis 

Though WFDS simulations were parameterized with the same inflow winds, the unique 

structure of each site before and after treatment produces different regimes of wind flow.  The 

functional relationship of streamwise wind velocity for a given height, U(z), is strongly 

influenced by the canopy bulk density at z (Poggi et al., 2004). Since each treatment would 

simultaneously alter both the wind and fuels within and below the canopy, this study evaluated 

the wind velocity profiles to aid in interpretation of the fire behavior; specifically, the 

spatiotemporal mean U(z) over the 200 m x 200 m site for a 15 min period.  

For each simulation three fire behavior metrics were estimated: rate of spread, fireline 

intensity, and percent canopy consumed. Rate of spread, the velocity of the fire front (e.g. m s-

1), and fireline intensity, a measure of energy output per unit time and unit length (kW m-1) 

were estimated using 10 belt transects within each simulated site. Transects were oriented in 

the streamwise direction, spanned the length of each site, were 1 m in width, and spaced 20 m 

apart each in the cross stream direction. In particular, rate of spread was estimated as the slope 
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parameter derived by regression of the transect-averaged fire front location, specifically at 1 m 

in height, against time. Fireline intensity was estimated by summing the total heat release on 

each transect for each second that the fire front was wholly contained within the site, and 

averaging over time and transects. The third metric of fire behavior, percent of canopy 

consumed, was calculated as a ratio of the post-fire canopy mass over the initial canopy mass.  

To investigate the relative roles of altered fuel loading on potential fire behavior, a 

series of fixed-effects ANOVA were used of the following form were used: 

𝛽0 + 𝛽1𝑤𝑖𝑛𝑑 + 𝛽2𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑙𝑜𝑎𝑑 + 𝛽3𝑐𝑏𝑑 + 𝛽4𝑐𝑏ℎ 

, where wind was the inflow, open wind speed, surface load was the average load used in each 

simulation, and cbd and cbh were the canopy bulk density and canopy base height of each site 

before and after treatment. Due to the complexities of structural complexity and wind velocity 

we did not include any direct metrics of structural complexity in this analysis. Rather we used 

wind velocity which accounts for both the bulk change in wind flow due to reduced fuel loads 

and the changes in wind flow due to local channeling effects created by various spatial 

arrangements of the canopy fuels. The ω2 statistic (Hays, 1994) was used to examine the 

relative importance of each factor on fire behavior measures in each ANOVA model. Residual 

diagnostic plots showed the models met assumptions of homoscedasticity and normality of 

residuals with raw, untransformed data. 
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1.3 RESULTS 

1.3.1 Initial results 

Before treatment, stocking among the seven sites varied, ranging from a threefold and 

twofold difference in tree density and basal area, respectively, from the least to most stocked 

sites (Table 1.1). Mechanical treatments selectively removed non-ponderosa pine conifers, and 

varied in intensity, reducing trees per hectare across sites from 29% to 81%, and basal area 

from 23% to 62%. In addition, canopy base height increased in 5 sites, decreased in one site, 

MG, and was unchanged in HB (Table1.3). 

 Although exact objectives in silvicultural prescriptions varied slightly among sites, all 

sampled areas explicitly stated objectives that sought to reduce potential fire behavior and 

qualitatively described the desired structure in such a way that might increase structural 

complexity (e.g. creation of a mosaic of tree patches and openings, increase tree aggregation, 

promote vertical diversity within patches). All sites were mechanically thinned with targets of 7 

to 14 m2 ha-1 of residual basal area.  

All treatments increased 1-hr dead and down woody fuel loads among all sites, though 

total surface fuel load (the cumulative mass of 1-hr dead and down woody fuel, litter, and 

surface vegetation) increased only in MG (Table 1.3). Among in sites HB, LC, DL, and UM, total 

surface load decreased, and was unchanged in PC and BW, following treatment. This occurred 

because litter composed over 90% of surface fuel load by mass, while 1-hr woody fuels and 

vegetative surface fuels composed less than 10% of mass. The herbaceous and shrubby fuel 
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loads changed inconsistently following treatment though constituted a negligible portion of 

total surface fuel load.  

 

Table 1.3. Summary of stand-averaged fuels properties, across 7 sites, before and after mechanical treatment. 

Surface fuel load is the contribution of load from litter, 1-hr time lag fuel, shrubby and herbaceous surface fuels. 

Site Treatment status 
Surface fuel load Canopy bulk density Canopy base height 

(kg m-2) (kg m-3) (m) 

HB 
Pre 1.04 0.14 3.6 

Post 0.76 0.10 3.6 

LC 
Pre 0.36 0.13 3.8 

Post 0.29 0.10 6.6 

MG 
Pre 0.41 0.14 3.2 

Post 0.62 0.06 2.6 

PC 
Pre 1.33 0.15 2.2 

Post 1.33 0.06 2.6 

DL 
Pre 1.16 0.08 2.2 

Post 0.61 0.05 3.0 

UM 
Pre 1.20 0.15 4.7 

Post 1.06 0.08 5.0 

BW 

Pre 0.24 0.09 4.6 

Post 0.24 0.03 4.7 

 

Initial inspections of stem maps reveal diverse forest structure and tree arrangement 

before and after mechanical treatments (Figure 1.3). Most notable is the large elliptical gap in 

DL before treatment and the large cluster of stumps in the northwestern corner, as well as the 
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linear pattern of removal in HB. Higher resolution stem-maps can be found in Figures 3.1—3.7 

(Section 3.2). 

 

Figure 1.3. Stem-maps from sampled sites, pre- and post-treatment, with points scaled to crown area. 

 The regressions used to predict DBH, crown width, tree height and crown base height 

from DSH for estimation of pre-treatment structure generally fit well. In addition, inspection of 

residuals confirmed linear regressions fit data well. Coefficients of determination were above 

0.70 for over half of the 38 linear regression analyses (Table 3.1; Section 3.2). Fits were 
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generally better for predictions of DBH and tree height more so than crown width and crown 

base height. In addition, measurements on species with larger sample sizes, such as ponderosa 

pine, quaking aspen (Populus tremuloides Michx.), Douglas-fir, and spruce had an improved fit 

over those with smaller sample sizes, such as Rocky Mountain juniper (Juniperus scopulorum 

Sarg.), Gambel oak (Quercus gambelii Nutt.), and two-needle pinyon (Pinus edulis Engelm.). 

1.3.2 Effect of treatments on structural complexity 

The univariate pair correlation function analysis performed both before and after 

mechanical treatments suggest that stand scale aggregation was present both before and after 

treatment (Table 1.4), with the exception of site HB, before treatment. The spatial pattern of 

trees following treatment did not consistently suggest either an increase or decrease in level of 

aggregation. Sites HB, MG, PC, and DL showed a significant increase in the level of aggregation 

following treatment (Table 1.4). Of these sites, the increase in level of aggregation did not alter 

the already aggregated pattern of MG, PC, and DL, though it was associated with the shift from 

a uniform pattern in HB to an aggregated pattern following treatment. While the level of 

aggregation did not significantly change in UM, treatments did significantly decrease the level 

of aggregation in sites LC and UM following treatment. Because the post-treatment patterns 

were still aggregated, this signifies that the reduction of aggregation was of relatively low 

magnitude. 
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Table 1.4. Univariate pair correlation function results describing the spatial tree patterns pre-treatment, gpre(r), 

post-treatment, gpost(r), and the bivariate pair correlation function, gpost(r) - gpre(r), results comparing degree of 

aggregation from post- to pre-treatment. 

Site 

gpre(r) gpost(r) gpost(r)- gpre(r) 

Pattern P Pattern P Difference P 

HB Unif. 0.002 Agg. 0.001 More agg. 0.001 

LC Agg. 0.001 Agg. 0.001 Less agg. 0.001 

MG Agg. 0.001 Agg. 0.001 More agg. 0.003 

PC Agg. 0.001 Agg. 0.001 More agg. 0.001 

DL Agg. 0.001 Agg. 0.001 More agg. 0.001 

UM Agg. 0.001 Agg. 0.001 Less agg. 0.026 

BW Agg. 0.001 Agg. 0.001 None 0.138 

Potential patterns are uniform (unif.), aggregated (agg.) or random 

At the patch scale, mechanical treatments reduced the frequency of the continuous 

cover patch size class (> 20 trees), and the large patch size class (10-20 trees), across all sites, 

and increased relative frequency of the smallest class (2-4 trees) (Table 1.5). Before treatment, 

the continuous cover patch class of over 20 trees per patch comprised a sizable portion of the 

patches (e.g. 43% of patches in MG). The treatments substantially reduced the number of these 

largest patches, completely eliminating their presence in sites HB, LC, and DL.  

Before treatment, the frequency of the smallest patches was sometimes as infrequent 

as 22% of patches, such as in sites MG and UM. After treatment, their presence was much more 

common, comprising 44% to 100% of all patches. As larger patches comprise more areal cover, 

a disproportionate removal of these patches would relate to a reduction in total cover 

represented by patches. Accordingly, the areal cover of patches fell by 8% to 26% across sites 
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following treatment (Table 1.5). Yet, the areal cover of patches still was greater than the areal 

cover of individual trees across a majority of sites after treatment; BW was the exception where 

slightly more area was represented by individual trees than patches. 

 

Table 1.5. Patch scale analysis of stem-mapped sites before (pre) and after (post) mechanical treatments. 

Site HB LC MG PC DL UM BW 

Status Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

Aerial cover (%) 

             
 

Indiv. Tree 8 8 5 7 4 8 5 6 6 9 4 4 8 5 

 
Openings 62 70 60 68 55 77 60 83 73 82 57 72 76 91 

 Patches 30 22 35 25 41 15 29 12 21 9 39 24 16 4 

Patch metrics 

             Frequency by patch size (# of trees) (%) 

          
 

Small (2-4) 51 59 32 59 22 53 35 56 36 80 22 44 67 100 

 

Medium (5-

10) 
23 26 18 29 18 19 25 23 18 17 13 21 13 0 

 
Large (11-20) 19 15 25 12 16 15 21 12 23 3 31 17 20 0 

 

Continuous 

cover (>20) 
6 0 25 0 43 13 18 9 24 0 34 18 0 0 

 

Across sites, mechanical treatments had varying effects on vertical complexity at both 

the stand and patch scales. At the stand scale, the median height differentiation index (TH) 

ranged greatly across sites after treatment, from a low of 0.17 in BW to a max of 0.77 in site PC 

(Figure 1.4). Median height differentiation values significantly increased in sites PC 

(W=2,426,161; p=0.01), MG (W=1,232,770; p=0.01), and HB (W=885,645; p=0.01), and 
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significantly decreased in sites BW (W=203,870; p<0.001), UM (W=1,330,682; p=0.01), DL 

(W=835,247; p<0.001), and LC (W=1,940,075; p<0.001), following treatment. 

 

 

Figure 1.4. Distributions of height differentiation index values (THi) and of coefficients of variation of tree heights 

(CVHT[i])  among each site before (light grey) and after (dark grey) mechanical treatments. Larger values represent 

greater degrees of height differentiation. 

Patch scale vertical complexity, as measured by CVHT, also ranged across sites post-

treatment from a minimum median of 0.13 at HB to a maximum median at 0.55 at PC (4). At 

this measured scale, treatments resulted in significantly greater median values only in MG 

(W=33,889; p=0.001), and significantly lesser median values among sites BW (W=7432; 

p=0.004), DL (W=21,836; p<0.001) and LC (W=25,088; p<0.001), while treatments did not 

significantly alter median values among sites UM (W=19,113; p=0.330), HB (W=38,026; 

p=0.155), and PC (W=40,163; p=0.611).  
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1.3.3 Simulated treatment effects on fire behavior and wind flow 

 

Figure 1.5. Vertical wind profiles of streamwise wind velocity, U, by height, z, across 7 different sites before (pre) 

and after (post) mechanical treatments at two wind scenarios (very low and high) as modeled by WFDS. 

Normalization is by h, the canopy height, and sites are ranked by basal area reductions from high to low. 
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Mechanical treatments altered mean within-canopy streamwise wind velocities and 

wind profile shapes at all sites. Wind profiles normalized by the wind speed at the top of the 

canopy demonstrate that open wind velocities had little effect on the functional relationship of 

wind speeds at a given height with respect to wind speeds at the top of the canopy (Figure 1.5). 

In other words, the wind profile shape below the canopy height was fairly constant across wind 

speeds. However, the reduction in canopy bulk density following treatments did alter the shape 

of the wind profile. The reduction of the prominence the inflection point within the canopy 

following treatment signifies that within-canopy wind speeds were higher after treatment 

despite similar open wind speeds (Figure 1.5). This finding is consistent among sites, with 

greater changes in wind associated with heavier thinnings, such as in PC, and lesser changes in 

wind associated with lighter thinnings, such as in LC.  

 

Figure 1.6. a) Rate of spread (ROS), b) log-scaled fireline intensity (FLI), and c) canopy consumption before (light 

grey) and after (dark grey) mechanical treatments averaged across 4 open wind scenarios, across seven sites, 

ranked by pre-treatment fire behavior, as predicted by WFDS. 

a) b) c) 
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Rate of spread was reduced in five of the seven sites following mechanical treatments. 

Among these 5 sites, the reduction of rate of spread, averaged over wind scenarios, ranged 

from 4% in HB to 42% in PC.  In LC and BW, sites with relatively moderate rates of spread before 

treatment, rate of spread had increased by 16% and 20%, respectively (Figure 1.6a). As open 

wind speed increased, rate of spread increased at a greater rate in pre-treatment simulations 

than post-treatment (Figure 1.7a). Rates of spread, averaged across the five sites with 

decreases following treatment, were 8% lower at very low wind scenarios and 32% lower under 

high wind scenarios, respectively. 

 

Figure 1.7. Modeled a) rate of spread (ROS), b) fireline intensity (FLI), and c) canopy consumption before and after 

mechanical treatments, across four open wind scenarios averaged over seven sites, as predicted by WFDS. 

b) a) 

c) 
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Fireline intensity was reduced following mechanical treatments in six of seven sites. In 

BW, fireline intensity increased over all wind scenarios by an average of 30%, bearing in mind 

fireline intensity was very low relative to other sites (Figure 1.6b). Across the 6 sites where 

fireline intensity was reduced, there was a substantial dependency of treatment impact on 

open wind speed. At the very low wind scenario, treatments resulted in a 47% reduction in 

fireline intensity, and a 72% reduction in fireline intensity at the high wind scenario, averaged 

across sites (Figure 1.7b).  

WFDS also predicted that treatment in all sites but BW would reduce percent of canopy 

consumed (Figure 1.6c).  Averaged over open wind speeds, the proportion of canopy consumed 

was reduced by up to 63% in DL and as low as 40%, among 6 sites. Though percent canopy 

consumed increased in BW following treatment, the effect was less than a 1% increase across 

all simulations (Figure 1.6c). Unlike rate of spread and fireline intensity, the effect of open wind 

speed on percent canopy consumed was only weakly correlated to the effect of treatment 

(Figure 1.7c).  

The high site to site variability in fire behavior before treatments and their varying of 

thinning intensity from treatments is partly accounted by the non-spatial measures of the fuels 

complex. As illustrated above, the level of open wind does influence rate of spread and fireline 

intensity, however fuels cumulatively explain a greater portion of variability in measures of fire 

behavior (Table 1.6). Of the three fuels complex parameters tested, surface fuel load 

overwhelmingly explained the most variability: 26% of variability in rate of spread and fireline 

intensity each, and 59% of the variability in percent canopy consumed.  
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Table 1.6. ANOVA results for fire behavior metrics under four open wind speed scenarios, for seven different 

stands before and after mechanical treatments, as modeled by WFDS. 

Source of 

variation 
Df 

Rate of spread 
 

Fireline intensity 
 

% canopy consumed 

SS F ω2   SS F ω2   SS F ω2 

Open wind 1 2.9 54.4* 0.28 
 

3,712,924,635 13.8* 0.10 
 

218.4 2.0 0.00 

Surface load 1 2.6 50.2* 0.26 
 

9,388,597,277 35.0* 0.26 
 

37,874.5 338.2* 0.59 

CBD 1 0.5 8.8* 0.04 
 

2,808,818,540 10.5.* 0.08 
 

781.4 7.0* 0.01 

CBH 1 0.1 2.8* 0.01 
 

263,268,492 1.0 0.00 
 

2.02 0.0 0.00 

Error 47 2.7     
 

13,690,593,637       5,258.7     

* Denotes factor was significant (p < 0.05) 

1.4 DISCUSSION 

1.4.1 Changes in structural complexity 

Results reveal that the seven different mechanical treatments altered aspects of structural 

complexity in an inconsistent manner. Various considerations during implementation likely 

produce mixed impacts. First, implementation of hazard reduction objectives (Agee and Skinner 

2005) likely lead to trade-offs with respect to producing greater structural complexity (Naficy et 

al., 2010; Larson and Churchill, 2012). It is likely that increases in the canopy heights among all 

sites resulted from targeted removal of ladder fuels. As ladder fuels are chosen due to their 

close proximity to a larger tree (Menning and Stephens, 2007), their removal would produce 

less aggregation at the stand scale aggregation and lower vertical complexity at stand and patch 

scales. Another silvicultural tactic reducing structural complexity is increasing inter-tree 

distances in order to locally lower canopy bulk density (Agee and Skinner, 2005). This would 
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produce lower levels of aggregation at the stand scale, and, at the patch scale, a shift towards 

individual tree prevalence over patches. To counteract homogenization of complexity, there are 

other silvicultural tactics implemented. Stand scale aggregation increases are partly attributable 

to opening creation. This concentrates tree removals and produces greater variability of inter-

tree distances than a regular, dispersed thinning. At the patch scale, Churchill et al. (2013a) 

demonstrated horizontal complexity is created when specific targets of patch sizes are used. 

This avoids leaving large areas of continuous cover, or conversely, a stand mainly composed of 

individual trees.  

Though these mechanical treatments often did not increase a specific measure of structural 

complexity, it does not constitute a general failure to promote some degree of heterogeneity. 

In these sites, post-treatment structural complexity was still largely defined by an aggregated 

tree patterns, some degree of vertical complexity, and a matrix of individual trees and smaller 

patches; these qualities mirror desired attributes of dry forest structure (Larson and Churchill, 

2012). Rather, the assumption that contemporary forests are homogeneous (Veblen et al., 

2000; Fulé et al., 2009; Naficy et al., 2010) and that treatments ought to increase complexity 

may be inappropriate. The spatially-dependent processes such as regeneration and mortality 

still occur in contemporary forests to produce complex structures even in undesirably dense 

stands (Mast and Veblen, 1999; Boyden et al., 2005). Further, these treatments may result in 

greater structural complexity through patch dynamics over time.  The creation of openings and 

aggregative tree patterns produce heterogeneous distributions of resources and rates of inter-

tree competition (McCarthy, 2001). As a result, trees on the periphery of patches can have 
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greater growth rates than interior trees given greater resource availability. This could lead to 

higher vertical complexity through time (sensu Plotkin et al., 2002).  

Division of structural complexity into horizontal and vertical dimensions provides a useful 

framework of assessing the distribution of trees as they varied in space and size. Through 

analysis of multiple spatial analyses, this study could individually focus on specific facets of 

heterogeneity, as recommended by Perry et al. (2006). In a review of reported structure of dry, 

historic forests, or those with intact disturbance regimes, Larson and Churchill (2012) noted 

that studies have focused on the horizontal distribution of structure, but have not shed light on 

the vertical distribution through space. Yet, how structure is vertically distributed through 

space has ecological implications, such as plant and animal niche diversity (McElhinny et al., 

2005). This is emphasized primarily only in moist old-growth forests, despite the many parallels 

in structural development with dry forests (Franklin, 2002; Zenner, 2004). 

1.4.2 Changes in fire behavior 

WFDS simulations of the sites suggested all treatments increased wind speeds within 

and below the canopies. In addition, those treatments with heavier thinnings resulted in 

greater wind speeds within the canopy. This finding was unsurprising as the causal link between 

canopy biomass and imposed drag is well-supported in the literature (Landsberg and James, 

1971; Raupach and Thom, 1981; Pimont et al., 2011; Linn et al., 2013). Greater open wind 

speeds did interact with the fire to produce increased surface fireline intensities and increase 

potential for crown fire initiation. Once in the canopy, higher wind speeds tilt the plume of hot 
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gasses towards horizontal, increasing convective heat flux to unburnt crowns (Linn, 1997), and 

produce greater rates of spread (Xanthopoulos, 1990, Scott and Reinhardt, 2001).  

In the five sites where a notable amount of crown fire activity was observed prior to 

treatment (>2% canopy consumed), mechanical treatments reduced all three measures of fire 

behavior despite increases in within and sub-canopy wind flow. Treatments reduced the total 

amount of available surface and canopy fuel, increased the typical gap from the surface to the 

canopy. In addition, the sped-up wind speed was not exacerbative as greater winds increase tilt 

of the plume such that the canopy is less directly contacted (Luke and McArthur, 1978; Cruz et 

al., 2006) and high wind speeds dilute plumes of hot gasses by introducing ‘fresh’ cool air 

(Bilbao et al., 2001). Most significantly, I observed that fire behavior, post-treatment, increased 

with open wind speed at a rate less than pre-treatment. In the more open canopies, convective 

cooling towards unburnt crowns ahead of the fire front is greater than convective heating 

(Tachajapong et al., 2014). 

Interestingly, mechanical treatments did not lead to a reduction in fire behavior on two 

of our sampled sites. On these sites, the fire primarily burned through the surface fuels with 

little surface to crown fire transition occurring. This is likely due to the low surface fuel loads 

observed in these sites and a sparser canopy which allowed for greater cooling as the fire 

spread below the canopy. Due to the lack of involvement of the canopy fuels in these sites the 

simulated fire dynamics parallels wind-driven surface-fires (e.g. Cheney et al., 1993). In these 

fire dynamics, increases in sub-canopy wind velocities exacerbate the surface fire by tilting the 

flaming front thus increasing effective radiative heat flux to unburnt surface fuels and 

increasing rates of spread and fireline intensities. The increased fire rates of spread and 
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intensities in these stands may weaken the ability of fire operations to utilize treated areas 

during suppression operations (Moghaddas and Craggs, 2007; Reinhardt et al., 2008). Further, 

though not observed here, treatments in similar stands could lead to increased crown fire 

activity if conditions are such that the net heat flux exposure of canopy fuels was increased. 

Such conditions could occur if large accumulations of surface fuels, such as activity fuels or 

shrub and tree regeneration were present, or if the spatial arrangement of canopy fuels allows 

high residence time of surface to canopy convective heat flux (Tachajapong et al., 2014). In 

addition it is unknown how extreme wind scenarios, greater than those tested in this study, will 

influence fire behavior and the onset of crown fire activity. Further research is needed to better 

understand under what conditions treatments could lead to greater occurrences of surface to 

crown fire transitions. 

 Across simulations of fire behavior both before and after treatment, canopy 

consumption ranged from negligible, indicative of surface fire, to crown fires combusting up to 

93% of all canopy mass. Among simulations of over 20% canopy consumed, the median fireline 

intensity was ~20,600 kW m-1 with an interquartile range from 10,000 kW m-1 to 33,000 kW m-1; 

at the extreme end, two WFDS simulations predicted intensities of ~108,000 kW m-1 and 

117,000 kW m-1. Accurate comparisons to crown fire fireline intensities are difficult due to the 

indirect method of fireline intensity estimation (Alexander, 1982), though available data 

suggest crown fires commonly range from 4,000 kW m-1 to 30,000 kW m-1, potentially reaching 

up to 150,000 kW m-1 (Kiil and Grigel, 1969; Trabraud, 1989; Stocks et al., 2004; Alexander and 

Cruz, 2013). In this study, WFDS predicted rates of spread across simulations varied by an order 

of magnitude, from 0.18 m s-1 to 1.95 m s-1. Crown fire rates of spread in ponderosa pine forests 
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have been observed to range from 0.24 m s-1 to 1.80 m under open wind speeds of 4.8 to 8.9 m 

s-1 (Alexander and Cruz, 2006). This range fits well with predictions from WFDS. Performing a 

rigorous evaluation of results from this study compared against fire behavior observed in field 

scale experiments is not trivial. WFDS requires a large extent of detailed data for 

parameterization, while real-world data is limited and requires liberal interpretation (Linn et al., 

2012). At face value, WFDS appears to qualitatively fit within observed fire behavior; it should 

be kept in mind that empirical observations are generally reported over larger spatiotemporal 

scales (e.g. km and hr), whereas this study’s observations occur over only 200 m for 1 to 15 

minutes. The variability expected in fire behavior across a landscape produced by changes in 

topography and fuels, and weather, especially over the course of hours, substantially limit 

direct comparison.  
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2. LITTER BULK DENSITY ESTIMATES FOR USE IN SOUTHERN ROCKY MOUNTAIN FORESTS 
 
 
 

2.1 INTRODUCTION 

An accurate inventory of the fuels complex is critical for a wide range of current 

management challenges including assessing fire hazard and effects, the design of fuels 

treatments, wildlife habitat assessment and the quantification of carbon pools (Agee and 

Skinner, 2005; Keane and Dickinson, 2007).  In addition, quantitative descriptions of wildland 

fuels are often required as inputs for planning and management models (Black and Opperman, 

2005; Hessburg et al., 2007; Keane, 2013). Common fuel assessments often simplify the fuels 

complex through the use of distinct fuelbed categories and then quantifying the desired 

characteristics for each category, such as fuel moisture, the mineral content or the heat 

content.  The most common characteristic quantified for any fuelbed category, and the central 

focus of this paper, is fuel load or the dry weight biomass of fuel per unit area (e.g. kg m-2, tons 

ac-1).    

Multiple methodologies have been developed to quantify fuel load for various fuelbed 

categories ranging from simple, rapid visual assessments to highly detailed measurements 

typically along transects or in fixed area (Sikkink and Keane, 2008) . There has been particular 

interest in accurately evaluating surface fuel loads which encompass dead and down woody 

material, non-woody vegetation such as grasses, forbs and shrubs, and the forest floor (Keane, 

2013). Recent studies have evaluated the accuracy of multiple methods used to quantify dead 

and down woody material (Sikkink and Keane, 2008), but there has been little assessment or 
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development of more robust methods used to quantify the forest floor or non-woody surface 

fuel loads. 

Despite that litter is often the most abundant source, by mass, of potential surface fuel 

to carry fire in dry, western forests (Ottmar et al 2007), litter load estimation has received little 

attention relative to other fuel categories.  Litter, also known as the Oi soil horizon, consists of 

the relatively undecomposed organic matter fallen from vegetation (Reinhardt et al., 1997). 

Litter is distinguished from woody fuels layers above and the more decomposed duff strata (Oe 

and Oa soil horizons) below (Ottmar et al., 2003). Litter often burns completely, contributing to 

fire behavior, as well as influencing fire effects such as nutrient storage, erosion potential, and 

post-fire vegetation dynamics (Kauffman and Martin, 1989; Bonnet et al., 2005). 

The most common approach to characterizing litter load is by directly measuring litter 

depth and multiplying by a reference bulk density value, hereafter referred to as the depth–to–

load method (Sikkink and Keane, 2008). The accuracy associated with this method depends 

upon a reliable estimate of litter bulk density (e.g. the dry weight of litter biomass per volume, 

kg m-3). In general, it is assumed that litter bulk density values are specific to forest types due to 

differences in compactness driven by needle morphology (Van Wagtendonk et al., 1998). 

However, reference values are limited geographically, by forest type and by recent disturbance 

history due to difficulty in measuring litter (Schulp et al., 2008). For example, though studies 

quantifying litter bulk density in ponderosa pine dominated forests (Pinus ponderosa Lawson) 

are well represented, these studies occur primarily only in Arizona, (Ffolliott et al., 1976, 1968; 

Eakle and Wagle, 1979), California (Van Wagtendonk et al., 1998; Reiner et al., 2009) and the 

northern Rocky Mountains (e.g. Brown, 1970, 1981), despite its wide range throughout the 
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western United States. Studies in ponderosa pine dominated forests also have either sampled 

stands without recent management activity (Harrington, 1986), did not differentiate study sites 

based on disturbance (Ewell, 2006), or did not provide adequate details to determine 

disturbance history (Brown, 1981). The disparate sampling efforts have precluded analysis into 

whether recent disturbances, such as management activity may impact litter bulk density, as 

suggested by Sevgi et al. (2011). These factors add to the uncertainty surrounding the 

appropriate choice of a litter bulk density value. The need to increase sampling of litter bulk 

density across forest types and geographical regions, taking into account recent disturbance 

history cannot be overstated. Without reliable estimates, use of the depth-to-load method is 

much hindered (Brown et al., 1982).   

 The primary objective of this study is to provide regional-specific litter bulk density 

values for two common, fire-frequent forest types of the southern Rocky Mountains, 

ponderosa pine and dry mixed-conifer, in both recently mechanically thinned and unthinned 

stands. Values from this investigation are meant to support surface fuel load assessments using 

the load-to-depth method complimentary to other methods such as dead and down woody fuel 

transects. 

2.2 METHODS 

2.2.1 Litter inventory 

Litter bulk density was measured across five study sites located throughout the 

Colorado Front Range and Colorado Plateau.  Sampling occurred during summer months of 
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2012 and 2013. Within each site, a mechanically thinned stand two years after treatment was 

sampled, as well as an adjacent unthinned stand identified in consultation with local forest 

managers as having similar structure and composition to that of the thinned stand before 

thinning.  All thinned stands were treated with a cut-to-length removal with the tree tops and 

branches scattered. Initial and post-treatment stocking varied across thinned stands (Table 2.1).  

Ponderosa pine was the dominant overstory tree in four sites, comprising over 85 % of total 

basal area. In the mixed conifer site (Phantom Creek), Douglas-fir (Pseudotsuga menziesii 

[Mirb.] Franco), ponderosa pine, and spruce (Picea engelmannii Parry ex Engelm.; Picea 

pungens Engelm.) were the most common tree species, comprising 54%, 20% and 19% of pre-

thinning basal area, respectively. The thinning favored ponderosa pine, a more fire-tolerant 

species, as recommended by fuels reduction strategies (Reinhardt 2008). Post-thinning, 

Douglas-fir, ponderosa pine, and spruce composed 41%, 32% and 10% of basal area, 

respectively. 

In each stand, samples were collected across a 4 hectare plot chosen for having less 

than 10% average slope and little topographic variability.  A starting point was randomly 

generated within each stand as a corner for establishing a square grid with 64 points spaced 

regularly every 25 m.  At each grid point, an azimuth and distance was randomly selected with 

12m from the grid point.  At each sampling location, a square 930 cm2 frame was inserted into 

the forest floor.  Litter depth was measured at nine, uniformly distributed points in the frame, 

collected and weighed after oven-drying. Dead and down woody material in the litter stratum 

was removed before weighing as supplementary sampling methods are available for estimating 
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this surface fuel component (e.g. Brown, 1974). Litter bulk density of each sample was 

calculated by dividing the oven-dry mass over the product of mean litter depth and frame area. 

 

Table 2.1. Composition and stocking of sampled stands, before and after thinning, based on trees at least 1.4 m 

tall. 

Managing agency Site Major tree spp.* 

Basal area 

(m2ha-1) 

Density 

(trees ha-1) 

Before After Before After 

Boulder Cty. Parks & 

Open Spaces 
Heil PIPO 19 15 418 295 

Pike NF Messenger Gulch PIPO 23 11 685 269 

Cibola NF Bluewater PIPO 19 8 327 63 

Uncompahgre NF Uncompahgre 

Mesa 
PIPO 30 18 504 314 

Pike NF Phantom Creek PIPO, PSME, PICEA 25 10 934 352 

*Species with at least 15% of total basal area before thinning; nomenclature follows NRCS PLANTS database (USDA 

NRCS, 2014) 

2.2.2 Statistical analyses 

Mean litter bulk density of thinned and unthinned ponderosa pine dominated sites was 

compared with a mixed-effects 2-way analysis of variance with treatment status (thinned or 

unthinned) as a fixed effect and site as random effect, included to account for stand level 

variability (PROC MIXED, SAS version 9.3). For the mixed-conifer site, a two-sample t-test 

determined differences among mean litter bulk density by thinning status (PROC TTEST, SAS 
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version 9.3). For all tests, significant differences are reported using α = 0.05. Some observations 

were missing, leading us to perform unbalanced tests. Inspection of residuals revealed tests 

were balanced and had equal variance, so data were untransformed. 

Regression analysis was used to determine if litter bulk density remained constant 

regardless of total litter depth (PROC GLM, SAS version 9.3). A lack of significance in a 

regression of observed litter depth and litter bulk density would indicate that a single litter bulk 

density could be used to estimate litter fuel load.   

2.3 RESULTS 

Litter bulk densities across all sampled ponderosa pine sites, regardless of treatment 

status, averaged 20.88 kg m-3, with a standard deviation about 50% of the mean (Table .2).  Bulk 

density was 13 % lower in thinned than unthinned stands (F = 11.39, P < 0.001).  Site explained 

a significant portion of variance in litter bulk density (F = 9.33; P < 0.001).  A post-hoc site 

multiple comparison revealed the site at Messenger Gulch significantly differed from the other 

sites, with a bulk density about 5 kg m-3 denser than the others (Table 2.2). 

Mean litter bulk density in dry, mixed conifer stands was 58.23 kg m-3.  Standard 

deviation of observations was over twice as great than in ponderosa pine.  Litter bulk density 

was on average 15.61 kg m-3
 more dense in the thinned versus unthinned stands (F = 12.35; P < 

0.001) in this forest type. 

Average litter depths were similar in ponderosa pine and mixed conifer stands, as well 

as in thinned and unthinned stands.  The total range of litter depths for ponderosa pine and 

mixed conifer stands were from 0.1 cm to 7.0 cm and from 0.2 cm to 5.6 cm, respectively.  
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Among ponderosa pine stands, there was no significant influence of litter depth on litter bulk 

density (F = 1.92, P = 0.17), while among the mixed conifer samples, litter bulk density 

significantly decreased with litter depth, though the correlation was low (F = 21.481, P < 0.01; 

adj. r2 = 0.14). 

 

Table 2.2. Summary statistics of litter bulk densities and depths across sampled stands by forest type, treatment 

status and site.  Superscript letters represent groups from Tukey-Kramer adjusted pairwise comparisons. 

  𝑛 

Litter bulk density 

(kg m-3) 

Litter depth 

(cm) 

x ̄ s x ̄ s 

Ponderosa pine 

 (all) 506 20.88 10.25 1.9 1.4 

by status      

 Thinned 254 19.46 10.25 2.1 1.5 

 Unthinned 251 22.3 10.07 2.3 1.1 

by site      

 Heil 127 20.18 9.30a 2.9 1.6 

 Messenger Gulch 125 24.69 13.36b 1.7 1.0 

 Bluewater 128 20.28 8.91a 1.2 0.6 

 Uncompahgre Mesa 126 18.43 10.02a 2.9 0.9 

Dry, mixed conifer – Phantom Creek 

 (all) 125 58.23 26.04 1.8 0.9 

by status      

 Thinned 63 65.91 20.15 1.7 0.6 

 Unthinned 62 50.30 29.07 2.0 1.1 
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2.4 DISCUSSION 

2.4.1 Litter bulk density by forest type 

The results provide litter bulk density values for use with the load-to-depth method for 

ponderosa pine and dry mixed conifer forests in the Colorado Front Range and Colorado 

Plateau. Within this study, mean bulk density in dry mixed conifer forest was almost three 

times denser than in the ponderosa pine forests.  Litter bulk density in the mixed conifer site 

was likely denser due to the prevalence of spruce and Douglas-fir. The morphological 

characteristics of these species’ foliage lead to “stacking” of litter and relatively dense litter 

layers. Conversely, pine litter beds are more likely to create “fluffy” litter strata as pine needles 

are bound to fascicles and protrude in various directions.  If needle morphology does explain 

these differences, variability in species diversity could explain the greater variability in litter 

bulk densities of the mixed conifer site.  

Further, results suggest effects of thinning on litter bulk density depended upon forest 

type.  For ponderosa pine forest, results suggest that there is a decrease in the litter bulk 

density, while in the dry mixed conifer forest site, litter bulk density was higher following 

thinning. It’s possible litter bulk density decreases in treated ponderosa pine stands may be due 

to a shift in litter inputs from dense material such as strobili and bark slough to a lighter 

material such as dead grass and forb leaves component of herbaceous material.  The 

contrasting result of the increase in litter bulk density for the thinned mixed conifer stand 

demonstrates the importance of distinguishing among forest types and management activities.  

Perhaps the preferential thinning of the Douglas-fir and spruce within the mixed conifer site 
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increased litter bulk density by adding in a large component of small and compact needles. 

Regardless, the observed effect size of thinning was diminished by site to site variance and 

replication was limited to only one mixed conifer site. Therefore, managers need not select 

reference litter bulk density values based on disturbance for these forest types, except for 

dramatic disturbances of the forest floor such as mastication (Reiner et al., 2009; Battaglia et 

al., 2010).   

Litter bulk density remained constant regardless of total litter depth yielded different 

results based on forest type. The lack of relationship across the ponderosa pine forest type 

supports the assumption that the use of a single bulk density value is valid for litter depths up 

to 7 cm deep in the study region.  In contrast, a relationship between sample litter depth and 

litter bulk density in mixed conifer forests was observed, but it had limited explanatory power 

and samples were from just one site. Until further research investigating the relationship 

between litter depth and bulk density, it is suggested a single bulk density value is appropriate 

for litter samples of varying depths for both forest types. 

2.4.2 Comparison to previously published values 

Several previously reported values in ponderosa pine forests of other regions compare 

well with results from this study. In Arizona, Ffolliott et al. (1968, 1976) presented slightly lower 

mean litter bulk density values (15.89 kg m-3 and 17.65 kg m-3) then those reported here (~20 kg 

m-3). Their relatively low values are believed to be caused by their exclusion of all non-needle 

material (Harrington, 1986). However, in western Montana, Brown (1970) reported a mean 

bulk density of 15.8 kg m-3 and included all non-woody material. Brown also later reported 
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(Brown, 1981) median litter bulk density values for two ponderosa pine habitat types sampled 

across a broader region of the northern Rockies. These median values, 21.9 kg m-3 and 22.4 kg 

m-3 are close in agreement to unthinned values here. Again, all vegetative organic matter, with 

exception of dead and down wood was included. 

In contrast, several studies report much higher estimates of litter bulk density in 

ponderosa pine forests ranging from between 53.50 kg m-3 and 88.42 kg m-3(Eakle and Wagle, 

1979; Battaglia et al., 2010, 2008; Woodall and Monleon, 2008). However, these studies use 

alternative methods to identify the litter layer. These studies identified litter similar to 

protocols of Soil Survey Staff (1975) where the forest floor is divided into litter (O1) and duff 

(O2) strata based on whether or not constituent origin is macroscopically identifiable. In 

contrast, this study, and those that reported similar values use the stratification consistent with 

(Soil Classification Working Group, 1998) where the forest floor is divided into: a freshly fallen 

litter horizon with macroscopically identifiable origins (Oi); a partially decomposed 

fermentation horizon with macroscopically identifiable origins (Oe); and a much decomposed 

humus horizon without macroscopically identifiable origins (Oi) (Figure 2.1).  Presumably, 

because forest floor bulk density increases with depth (van Wagtendonk et al., 1998, Stephens 

et al., 2004), studies based on the method by Soil Survey Staff (1975) are more likely to result in 

greater estimates of litter bulk density.  
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Figure 2.1. Example application of two methods to identify forest floor strata. On the left, Soil Survey Staff (1975) 

and, on the right, Soil Classification Working Group (1998). 

Comparison to other dry mixed conifer forests values is difficult because no other study 

has quantified these values for a similar species composition mix as sampled in this study.  

Battaglia et al. (2010) sampled in the Colorado Front Range and reported a median litter bulk 

density of 46.6 kg m-3. However, the species mixture was of lodgepole pine (Pinus contorta 

Douglas ex Loudon), ponderosa pine, limber pine (Pinus flexilis James) and Douglas-fir.  In 

Arizona, Ffolliott et al. (1977) reported a much lower litter bulk density (ca. 18 kg m-3) in stands 

of Douglas-fir, white fir (Abies concolor [Gord. & Glend.] Lindl. Ex Hildebr.), southwestern white 

pine (Pinus strobiformis Englm.), corkbark fir (Abies lasiocarpa [Hook] nutt. var. arizonica 

[Merriam] Lemmon), ponderosa pine, blue spruce, Engelmann spruce and quaking aspen 

(Populus tremuloides Michx.). The relative composition of forests in these studies is unclear, but 

further suggest that mean litter bulk density may be affected by composition. This highlights 

the challenge and complexity that is faced when attempting to estimate litter fuel loads in 
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these forest types. Further research is needed to examine the changes in litter bulk density in 

relation to various mixtures of species composition for better estimates of litter fuel loads in 

these forest types.  

2.4.3 Management implications 

The difference in choice of a reference litter bulk density carries implications for 

decision making in forest management. For example, observed mean value for litter bulk 

density and depth measured here results in an estimated 0.40 kg m-2 litter load, versus 1.02 kg 

m-2 using Woodall and Monleon (2008). This impacts fire management decisions as smoke 

emissions and heat per unit area from litter are predicted using constant factors based on litter 

load. (Reinhardt et al., 1997). The difference in estimated litter loads may influence decisions 

on whether or not to employ a prescribed fire for a given set of environmental conditions and 

operational burning tactics used (Hardy et al., 2001). Accurate litter load estimation is also 

pertinent to other forest management objectives, such as carbon emission offsets. As carbon 

content of litter is also estimated as a constant factor of litter load (Law et al., 2001), the 

predicted amount of stored carbon predicted will greatly affect investment-return expectations 

of carbon offset projects (Malmsheimer et al., 2011). 

2.4.4 Future work 

While these results provide a baseline reference value for ponderosa pine and dry 

mixed conifer forests in Colorado there are several additional factors that may influence litter 

bulk density. Additional variability in litter deposition and decomposition during a year in 
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response to seasonal changes in litterfall rates, across years during events such as droughts, 

and in abrupt episodes such as intense storm or wind events is likely. Sampling occurred only 

during summer months as forest and fire managers are especially interested in the fuels 

complex at this temporal snap-shot. Further, additional investigation into the spatial 

distribution of litter properties and how forest type, structure and disturbance history shapes 

this distribution is warranted. This information can be used in the future to better link litter 

properties to fire behavior and effects.  

2.4 CONCLUSION 

Application of the values reported here is best utilized when estimating the litter fuel 

load using the load-to-depth method. Although fuels monitoring databases, and fuels 

calculation systems often rely on this method for estimating litter fuel load not all systems 

allow the user to customize the litter bulk density value.  For example, FuelCalc (Reinhardt et 

al., 2006) and FFI (Lutes et al., 2006) allow for customization of litter bulk density, while FCCS 

(Prichard et al., 2011) does not allow for user to customize the litter bulk density values.  

Instead, for FCCS, observed litter depth may need to be altered in order to match a litter load 

calculated from this study’s reported bulk densities. Users should also note definitions of litter 

constituents may vary by application. FCCS, for example, defines litter as needles, dead 

herbaceous material, bark slough and fine woody material less than 6.4 mm in diameter. As 

dead and down woody material was excluded from this study’s derived estimates, FCCS users 

would need to account for my omission. 
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In conclusion, regional values of litter bulk density are provided here for managers to 

employ with the depth-to-load method for litter load estimation. These results reinforce the 

notion that forest type is an important consideration when choosing a litter bulk density value 

and that this method should work over a range of litter depths. At the same time, site to site 

variability was larger than that found following thinning. As such differentiating bulk density 

values according to thinning status may not result in greater accuracy. 
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3. APPENDICES 
 
 
 

3.1 TYPICAL WFDS INPUT FILE 

The following text contains an example of information input into WFDS to perform 

simulations. The values that were changed according to individual simulations were: CHID, 

TITLE, surface fuel VEGETATION_LOAD and surface fuel VEGETATION_HEIGHT, the tree list, and 

inflow VEL.  

 

&HEAD CHID='HB_Post_2ms' 

TITLE='Numerical simulation of HB after treatment with inflow, open wind speed at 2 ms' / 

 

- Mesh set-up 

&MESH ID='MESH1', IJK=310,25,100, XB=0,620,0,50,0,100 / 

&MESH ID='MESH2', IJK=310,25,100, XB=0,620,50,100,0,100 / 

&MESH ID='MESH3', IJK=310,25,100, XB=0,620,100,150,0,100 / 

&MESH ID='MESH4', IJK=310,25,100, XB=0,620,150,200,0,100 / 

&MESH ID='MESH5', IJK=310,25,100, XB=0,620,200,250,0,100 / 

&MESH ID='MESH6', IJK=310,25,100, XB=0,620,250,300,0,100 / 

&MESH ID='MESH7', IJK=310,25,100, XB=0,620,300,350,0,100 / 

&MESH ID='MESH8', IJK=310,25,100, XB=0,620,350,400,0,100 / 

&MESH ID='MESH9', IJK=300,20,100, XB=620,920,0,20,0,100 / 

&MESH ID='MESH10', IJK=300,20,100, XB=620,920,20,40,0,100 / 

&MESH ID='MESH11', IJK=300,20,100, XB=620,920,40,60,0,100 / 

&MESH ID='MESH12', IJK=300,20,100, XB=620,920,60,80,0,100 / 
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&MESH ID='MESH13', IJK=300,20,100, XB=620,920,80,100,0,100 / 

&MESH ID='MESH14', IJK=300,20,100, XB=620,920,100,120,0,100 / 

&MESH ID='MESH15', IJK=300,20,100, XB=620,920,120,140,0,100 / 

&MESH ID='MESH16', IJK=300,20,100, XB=620,920,140,160,0,100 / 

&MESH ID='MESH17', IJK=300,20,100, XB=620,920,160,180,0,100 / 

&MESH ID='MESH18', IJK=300,20,100, XB=620,920,180,200,0,100 / 

&MESH ID='MESH19', IJK=300,20,100, XB=620,920,200,220,0,100 / 

&MESH ID='MESH20', IJK=300,20,100, XB=620,920,220,240,0,100 / 

&MESH ID='MESH21', IJK=300,20,100, XB=620,920,240,260,0,100 / 

&MESH ID='MESH22', IJK=300,20,100, XB=620,920,260,280,0,100 / 

&MESH ID='MESH23', IJK=300,20,100, XB=620,920,280,300,0,100 / 

&MESH ID='MESH24', IJK=300,20,100, XB=620,920,300,320,0,100 / 

&MESH ID='MESH25', IJK=300,20,100, XB=620,920,320,340,0,100 / 

&MESH ID='MESH26', IJK=300,20,100, XB=620,920,340,360,0,100 / 

&MESH ID='MESH27', IJK=300,20,100, XB=620,920,360,380,0,100 / 

&MESH ID='MESH28', IJK=300,20,100, XB=620,920,380,400,0,100 / 

&MESH ID='MESH29', IJK=40,200,100, XB=920,1000,0,400,0,100 / 

 

&TRNZ IDERIV=1,CC=0.,PC=0.5,MESH_NUMBER=1 / 

&TRNZ IDERIV=1,CC=0.,PC=0.5,MESH_NUMBER=2 / 

&TRNZ IDERIV=1,CC=0.,PC=0.5,MESH_NUMBER=3 / 

...CONTINUED... 

&TRNZ IDERIV=1,CC=0.,PC=0.5,MESH_NUMBER=28 / 

&TRNZ IDERIV=1,CC=0.,PC=0.5,MESH_NUMBER=29 / 

 

&TRNZ IDERIV=2,CC=0.,PC=0.0,MESH_NUMBER=1 / 

&TRNZ IDERIV=2,CC=0.,PC=0.0,MESH_NUMBER=2 / 
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&TRNZ IDERIV=2,CC=0.,PC=0.0,MESH_NUMBER=3 / 

...CONTINUED... 

&TRNZ IDERIV=2,CC=0.,PC=0.0,MESH_NUMBER=28 / 

&TRNZ IDERIV=2,CC=0.,PC=0.0,MESH_NUMBER=29 / 

 

- Simulation duration 

&TIME TWFIN=2500. / 

 

- Miscellaneous parameters 

&SPEC ID='WATER VAPOR' / 

&MISC RADIATION=.TRUE.,BAROCLINIC=.TRUE.,TERRAIN_CASE=.FALSE., WIND_ONLY=.FALSE. / 

 

- Parameters for gaseous combustion following solid fuel pyrolysis 

&REAC ID='WOOD' 

      FYI='Ritchie, et al., 5th IAFSS, C_3.4 H_6.2 O_2.5' 

      SOOT_YIELD = 0.02 

      O          = 2.5 

      C          = 3.4 

      H          = 6.2 

      HEAT_OF_COMBUSTION = 17700 / 

 

- Surface boundary fuels 

&SURF ID = 'GROUND VEG1' 

      VEGETATION = .TRUE. 

      VEGETATION_INITIAL_TEMP = 20 

      VEGETATION_CDRAG    = 0.05 

      VEGETATION_MOISTURE = 0.05 
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      VEGETATION_SVRATIO  = 5710 

      VEGETATION_CHAR_FRACTION  = 0.265 

      VEGETATION_LOAD     = 0.58 

      VEGETATION_HEIGHT   = 0.08 

      VEGETATION_ELEMENT_DENSITY= 510 

      EMISSIVITY = 0.99  

      VEGETATION_ARRHENIUS_DEGRAD=.FALSE. 

      FIRELINE_MLR_MAX = 0.35  

      RGB        = 122,117,48 / 

&VENT XB=1,680,0,400,0,0,SURF_ID='GROUND VEG1' / 

&VENT XB=683,996,0,400,0,0,SURF_ID='GROUND VEG1' / 

 

- Defining crown fuel 

&PART ID='TREE',TREE=.TRUE.,QUANTITIES='VEG_TEMPERATURE', 

      VEG_INITIAL_TEMPERATURE=20., 

      VEG_SV=4000.,VEG_MOISTURE=1.0,VEG_CHAR_FRACTION=0.25, 

      VEG_DRAG_COEFFICIENT=0.125,VEG_DENSITY=520.,VEG_BULK_DENSITY=1.2, 

      VEG_BURNING_RATE_MAX=0.4,VEG_DEHYDRATION_RATE_MAX=0.4, 

      VEG_REMOVE_CHARRED=.TRUE. / 

 

- Defining tree stems 

&PART ID='TRUNK',TREE=.TRUE.,QUANTITIES='VEG_TEMPERATURE', 

      VEG_SV=3.,VEG_MOISTURE=1.0, 

      VEG_DRAG_COEFFICIENT=0.125,VEG_DENSITY=520., 

      VEG_BULK_DENSITY=520 / 

 

- List of trees within study plot 
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&TREE XYZ=779.18,136.87,0,PART_ID="TREE",FUEL_GEOM="CONE",CROWN_WIDTH=1.08 

,CROWN_BASE_HEIGHT=0.63,TREE_HEIGHT=1.38,OUTPUT_TREE=.TRUE.,LABEL="TREE1"/ 

&TREE XYZ=760.66,188.02,0,PART_ID="TREE",FUEL_GEOM="CONE",CROWN_WIDTH=0.9 

,CROWN_BASE_HEIGHT=0.82,TREE_HEIGHT=1.42,OUTPUT_TREE=.TRUE.,LABEL="TREE2"/ 

&TREE XYZ=881.24,246.21,0,PART_ID="TREE",FUEL_GEOM="CONE",CROWN_WIDTH=0.66 

,CROWN_BASE_HEIGHT=0.25,TREE_HEIGHT=1.43,OUTPUT_TREE=.TRUE.,LABEL="TREE3"/ 

...CONTINUED... 

&TREE XYZ=858.74,256.68,0,PART_ID="TREE",FUEL_GEOM="CONE",CROWN_WIDTH=8.64 

,CROWN_BASE_HEIGHT=6.95,TREE_HEIGHT=18.86,OUTPUT_TREE=.TRUE.,LABEL="TREE724"/ 

&TREE XYZ=827.35,147.72,0,PART_ID="TREE",FUEL_GEOM="CONE",CROWN_WIDTH=2.16 

,CROWN_BASE_HEIGHT=0.48,TREE_HEIGHT=20.04,OUTPUT_TREE=.TRUE.,LABEL="TREE725"/ 

 

&TREE XYZ=779.18,136.87,0,PART_ID="TRUNK",FUEL_GEOM="CYLINDER", CROWN_WIDTH=0.0178 

,CROWN_BASE_HEIGHT=0,TREE_HEIGHT=0.63 / 

&TREE XYZ=760.66,188.02,0,PART_ID="TRUNK",FUEL_GEOM="CYLINDER", CROWN_WIDTH=0.0203 

,CROWN_BASE_HEIGHT=0,TREE_HEIGHT=0.82 / 

&TREE XYZ=881.24,246.21,0,PART_ID="TRUNK",FUEL_GEOM="CYLINDER", CROWN_WIDTH=0.0102 

,CROWN_BASE_HEIGHT=0,TREE_HEIGHT=0.25 / 

...CONTINUED... 

&TREE XYZ=858.74,256.68,0,PART_ID="TRUNK",FUEL_GEOM="CYLINDER", CROWN_WIDTH=0.4953 

,CROWN_BASE_HEIGHT=0,TREE_HEIGHT=6.95 / 

&TREE XYZ=827.35,147.72,0,PART_ID="TRUNK",FUEL_GEOM="CYLINDER", CROWN_WIDTH=0.1041 

,CROWN_BASE_HEIGHT=0,TREE_HEIGHT=0.48 / 

 

- List of trees outside of study plot 

&TREE XYZ=79.18,363.13,0,PART_ID="TREE",FUEL_GEOM="CONE",CROWN_WIDTH=1.08 

,CROWN_BASE_HEIGHT=0.63,TREE_HEIGHT=1.38,OUTPUT_TREE=.FALSE. / 
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&TREE XYZ=60.66,311.98,0,PART_ID="TREE",FUEL_GEOM="CONE",CROWN_WIDTH=0.9 

,CROWN_BASE_HEIGHT=0.82,TREE_HEIGHT=1.42,OUTPUT_TREE=.FALSE. / 

&TREE XYZ=181.24,253.79,0,PART_ID="TREE",FUEL_GEOM="CONE",CROWN_WIDTH=0.66 

,CROWN_BASE_HEIGHT=0.25,TREE_HEIGHT=1.43,OUTPUT_TREE=.FALSE. / 

...CONTINUED... 

&TREE XYZ=958.74,156.68,0,PART_ID="TREE",FUEL_GEOM="CONE",CROWN_WIDTH=8.64 

,CROWN_BASE_HEIGHT=6.95,TREE_HEIGHT=18.86,OUTPUT_TREE=.FALSE. / 

&TREE XYZ=927.35,47.72,0,PART_ID="TREE",FUEL_GEOM="CONE",CROWN_WIDTH=2.16 

,CROWN_BASE_HEIGHT=0.48,TREE_HEIGHT=20.04,OUTPUT_TREE=.FALSE. / 

 

&TREE XYZ=79.18,363.13,0,PART_ID="TRUNK",FUEL_GEOM="CYLINDER", CROWN_WIDTH=0.0178 

,CROWN_BASE_HEIGHT=0,TREE_HEIGHT=0.63 / 

&TREE XYZ=60.66,311.98,0,PART_ID="TRUNK",FUEL_GEOM="CYLINDER", CROWN_WIDTH=0.0203 

,CROWN_BASE_HEIGHT=0,TREE_HEIGHT=0.82 / 

&TREE XYZ=181.24,253.79,0,PART_ID="TRUNK",FUEL_GEOM="CYLINDER", CROWN_WIDTH=0.0102 

,CROWN_BASE_HEIGHT=0,TREE_HEIGHT=0.25 / 

...CONTINUED... 

&TREE XYZ=958.74,156.68,0,PART_ID="TRUNK",FUEL_GEOM="CYLINDER", CROWN_WIDTH=0.4953 

,CROWN_BASE_HEIGHT=0,TREE_HEIGHT=6.95 / 

&TREE XYZ=927.35,47.72,0,PART_ID="TRUNK",FUEL_GEOM="CYLINDER", CROWN_WIDTH=0.1041 

,CROWN_BASE_HEIGHT=0,TREE_HEIGHT=0.48 / 

 

- Ignitor fire 

&SURF ID='IGN FIRE', HRRPUA=275.,RAMP_Q='RAMPFIRE' / 

&RAMP ID='RAMPFIRE',T=0.0,F=0.0 / 

&RAMP ID='RAMPFIRE',T=1310.0,F=0.0 / 

&RAMP ID='RAMPFIRE',T=1326.0,F=0.5 / 
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&RAMP ID='RAMPFIRE',T=1332.0,F=1.0 / 

&RAMP ID='RAMPFIRE',T=1338.0,F=1.0 / 

&RAMP ID='RAMPFIRE',T=1339.0,F=0.5 / 

&RAMP ID='RAMPFIRE',T=1340.0,F=0.0 / 

&VENT XB=680,683,50,350,0,0, SURF_ID='IGN FIRE'/ 

 

- Inflow 

&SURF ID='INFLOW',VEL=-2.24, RAMP_V='RAMPVEL', PROFILE='ATMOSPHERIC', Z0=20.,PLE=0.143 / 

&RAMP ID='RAMPVEL',T=0.0,F=0.0 / 

&RAMP ID='RAMPVEL',T=1.0,F=0.1 / 

&RAMP ID='RAMPVEL',T=2.0,F=0.2 / 

&RAMP ID='RAMPVEL',T=3.0,F=0.3 / 

&RAMP ID='RAMPVEL',T=4.0,F=0.4 / 

&RAMP ID='RAMPVEL',T=5.0,F=0.5 / 

&RAMP ID='RAMPVEL',T=6.0,F=0.6 / 

&RAMP ID='RAMPVEL',T=7.0,F=0.7 / 

&RAMP ID='RAMPVEL',T=8.0,F=0.8 / 

&RAMP ID='RAMPVEL',T=9.0,F=0.9 / 

&RAMP ID='RAMPVEL',T=10.0,F=1.0 / 

 

- Boundary conditions 

&VENT XB=0,0,0,400,0,100, SURF_ID='INFLOW'/ 

&VENT XB=1000,1000,0,400,0,100, SURF_ID='OPEN'/ 

&VENT XB=0,1000,0,0,0,100, SURF_ID='MIRROR'/ 

&VENT XB=0,1000,400,400,0,100, SURF_ID='MIRROR'/ 

&VENT XB=0,1000,0,400,100,100, SURF_ID='MIRROR'/ 
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- Output data 

&DUMP DT_SLCF=1, DT_PART=1, DT_BNDF=1. / 

 

- Slice files for wind profiles 

&SLCF XB=700,900,100,300,1,1, QUANTITY='U-VELOCITY' / 

&SLCF XB=700,900,100,300,2,2, QUANTITY='U-VELOCITY' / 

&SLCF XB=700,900,100,300,3,3, QUANTITY='U-VELOCITY' / 

...CONTINUED... 

&SLCF XB=700,900,100,300,30,30, QUANTITY='U-VELOCITY' / 

&SLCF XB=700,900,100,300,40,40, QUANTITY='U-VELOCITY' / 

 

- Slice files for rate of spread and fireline intensity 

&SLCF XB=700,900,110,110,0,60, QUANTITY='HRRPUV' / 

&SLCF XB=700,900,130,130,0,60, QUANTITY='HRRPUV' / 

&SLCF XB=700,900,150,150,0,60, QUANTITY='HRRPUV' / 

...CONTINUED... 

&SLCF XB=700,900,270,270,0,60, QUANTITY='HRRPUV' / 

&SLCF XB=700,900,290,290,0,60, QUANTITY='HRRPUV' / 

 

- Declare end of input file  

&TAIL / 
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3.2 SUPPLEMENTAL FIGURES AND TABLES 

 

Figure 3.1. Four hectare stem-map of site HB, located within Boulder County Open Space land, before (left) and 

after (right) thinning. Points scaled to tree crown area. 
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Figure 3.2. Four hectare stem-map of site LC, located within the Kaibab National Forest, before (left) and after 

(right) thinning. Points scaled to tree crown area. 

 

Figure 3.3. Four hectare stem-map of site DL, located within the Roosevelt National Forest, before (left) and after 

(right) thinning. Points scaled to tree crown area. 
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Figure 3.4. Four hectare stem-map of site MG, located within the Pike National Forest, before (left) and after 

(right) thinning. Points scaled to tree crown area. 

 

Figure 3.5. Four hectare stem-map of site PC, located within the Pike National Forest, before (left) and after (right) 

thinning Points scaled to tree crown area. 
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Figure 3.6. Four hectare stem-map of site UM, located within the Kaibab National Forest, before (left) and after 

(right) thinning. Points scaled to tree crown area. 

 

Figure 3.7. Four hectare stem-map of site BW, located within the Cibola National Forest, before (left) and after 

(right) thinning. Points scaled to tree crown area. 
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Table 3.1. Summary of linear regressions to estimate tree geometry from diameter at stump height, localized for sites. Full model is y = β0 + β1site + β2dsh + β3 

(site x dsh). Regressions were reduced following backward selection, removing first site x dsh, then site if the term was not significant (p < 0.05). 

Spp. Y β0 β2 

Site HB Site LC Site MG Site PC Site DL Site UM Site BW 

n F r2 p 
β1 β3 β1 β3 β1 β3 β1 β3 β1 β3 β1 β3 β1 β3 

PIPO 

HT 4.0 0.3 -0.4 -0.1 -2.2 0.1 -2.7 0.1 -0.3 0.0 -2.9 0.0 -2.0 0.1 0.0 0.0 4531 1906 0.85 < 0.001 

CBH 3.9 0.0 -2.0 0.0 -3.4 0.1 -3.0 0.1 -1.9 0.1 -3.7 0.1 -2.8 0.1 0.0 0.0 4528 426 0.55 < 0.001 

DBH -1.0 0.8 -0.9 0.0 -2.9 0.0 -1.3 0.0 0.2 0.0 -1.3 0.0 -0.7 0.1 0.0 0.0 4552 12131 0.97 < 0.001 

CW 0.1 0.1 0.4 0.0 0.5 0.0 0.3 0.0 0.4 0.0 0.5 0.0 0.4 0.0 0.0 0.0 4501 1042 0.75 < 0.001 

POTR5 

HT* 1.6 0.5 - - - - - - 0.0  -0.7  -0.2  - - 1255 2131 0.84 < 0.001 

CBH* 0.9 0.3 - - - - - - 0.0  -1.5  -0.3  - - 1255 1176 0.74 < 0.001 

DBH* -0.6 0.9 - - - - - - 0.0 0.0 0.0 -0.1 0.7 0.0 - - 1255 9732 0.97 < 0.001 

CW 0.7 0.1 - - - - - - 0.0 0.0 -0.1 0.1 0.4 0.0 - - 1251 505 0.67 < 0.001 

PSME 

HT 0.1 0.4 0.8 0.0 - - 1.7 -0.2 1.5 -0.1 -2.1 0.0 0.0 0.0 - - 381 273 0.85 < 0.001 

CBH 1.2 0.0 0.8 0.0 - - -1.1 0.1 -1.0 0.1 -0.3 0.0 0.0 0.0 - - 379 96 0.67 < 0.001 

DBH 0.2 0.9 -2.0 -0.1 - - -1.4 -0.2 -1.1 -0.1 -4.1 0.0 0.0 0.0 - - 381 1565 0.97 < 0.001 

CW† 0.8 0.1   - -         - - 381 1451 0.79 < 0.001 

Species codes according to NRCS PLANTS Database; HT, CBH, DBH, DSH and CW refer to height (m), crown base height (m), diameter at breast height (cm), diameter at stump 

height and crown width (m), respectively; * and † indicate reduced models without an interaction term, and without both site and interactions terms, respectively; “-“ indicates 

species not present in site 
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Table 3.1 (cont.).  

Spp. Y β0 β2 
Site HB Site LC Site MG Site PC Site DL Site UM Site BW 

n F r2 p 

β1 β3 β1 β3 β1 β3 β1 β3 β1 β3 β1 β3 β1 β3 

PICEA 

HT 0.3 0.4 - - - - - - 0.0 0.0 - - 1.0 0.0 - - 230 496 0.87 < 0.001 

CBH† 0.4 0.1 - - - - - -   - -   - - 232 188 0.45 < 0.001 

DBH* -1.5 0.9 - - - - - - 0.0  - - 0.4  - - 232 12120 0.99 < 0.001 

CW* 0.8 0.1 - - - - - - 0.0  - - 0.5  - - 232 260 0.69 < 0.001 

QUGA 

HT† 2.0 0.2 - - - - - - - - - -   - - 190 114 0.38 < 0.001 

CBH† 1.3 0.1 - - - - - - - - - -   - - 190 41 0.18 < 0.001 

DBH† -0.3 0.9 - - - - - - - - - -   - - 190 3018 0.94 < 0.001 

CW† 0.8 0.1 - - - - - - - - - -   - - 190 91 0.33 < 0.001 

PIED 

HT† 3.0 0.2 - - - - - - - - - - - -   33 19 0.38 < 0.001 

CBH† 0.6 0.0 - - - - - - - - - - - -   33 5 0.13 0.041 

DBH† 4.5 0.8 - - - - - - - - - - - -   33 49 0.61 < 0.001 

CW† 1.8 0.1 - - - - - - - - - - - -   33 20 0.39 < 0.001 

JUSC2 

HT† 1.4 0.2   - - - - - -   - -   21 58 0.20 0.046 

CBH† -0.3 0.1   - - - - - -   - -   21 4 0.60 < 0.001 

DBH† -3.8 0.9   - - - - - -   - -   14 122 0.91 < 0.001 

CW† 0.5 0.1   - - - - - -   - -   20 42 0.70 < 0.001 

 


